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Abstract - Sample medical scenarios play a crucial role in
training healthcare professionals by providing structured
cases to develop diagnostic reasoning and clinical
decision-making skills. However, access to diverse and
inclusive sample diagnostic cases remains challenging
due to the limited representation of specific conditions
and populations in medical education materials, and
existing cases are often not equitable due to a lack of
representation of minority groups. In this paper, we
present a new dataset of medical diagnostic scenarios
generated using a combination of reinforcement learning
from artificial intelligence feedback and retrieval
augment generation techniques. Despite the dataset’s
limited size, it offers a unique resource for advancing
medical education, particularly in regions with scarce
training materials while also emphasizing inclusivity by
incorporating a higher representation of people of color
and women. Then, we discuss the data generation
process, the dataset structure, and potential applications
in medical training programs. This work aims to
contribute to the development of accessible, high-quality,
and inclusive educational tools in the medical field.

Index Terms - Medical education, reinforcement learning
from AI feedback, retrieval-augmented generation, large
language models

INTRODUCTION

Accurate medical diagnosis is fundamental to effective
patient care [1], yet the available educational resources are
often limited both in quantity and variety [2-3]. Traditional
case study scenarios in medical textbooks or reference
manuals may not encompass the wide array of clinical
scenarios encountered by practitioners, resulting in gaps in
training. This issue is particularly glaring in low- to middle-
income countries (LMICs), where access to comprehensive
healthcare training material is often scarce, potentially
hindering the delivery of high-quality healthcare services
[4].

To address these concerns, organizations like Stanford’s
Clinical Mind Al lab and Laerdal have developed
differentiated, innovative approaches to this problem. The
Clinical Mind Al has opted for primarily software-based
solutions, such as their current “Assessment of Clinical
Reasoning Skills using AI-Simulated Patients: Initial

Validity Evidence of the Platform Clinical Mind AI” project
that aims to refine soft-skills such as patient history
collection through an interactive “a targeted scoring rubric
and large language models for automated assessment” [5].
Laerdal, on the other hand, has elected to build “Harvey”, a
cardiopulmonary simulator that helps teach “bedside
assessment skills” while also promoting diversity and
inclusion [6].

While these  initiatives  represent  significant
advancements in artificial intelligence-assisted medical
education, they are often resource-intensive, making them
less accessible to institutions in LMICs. Furthermore,
existing case studies in textbooks are simplistic in nature as
they often seek to explain a specific concept through a
practical example. The implication of this is that these
scenarios may be lacking in diversity and inclusivity, which
are necessary to prepare healthcare professionals for the
wide array of scenarios they may experience in practice.
This limitation underscores the specific need for scalable,
inclusive, and equitable training scenarios.

In this research, we present a new method of medical
scenario generation powered by large language models
(LLMs) in combination with reinforcement learning from
artificial intelligence feedback (RLAIF) style refinement and
retrieval-augmented generation (RAG) techniques [7-9]. The
primary issue with simply asking an LLM to generate a
medical scenario, which we refer to as naive generation, is
the risk of the model generating information that is not
medically accurate or relevant, either by hallucination or
drift. Yang et. al. have shown that Retrieval-Augmented
Generation (RAG) enables generative Al models to produce
more reliable content by leveraging external knowledge
sources, enhancing equity, reliability, and personalization in
healthcare applications [10], while a small scale RLAIF
system enables iterative improvement of a medical
diagnostic scenario while reducing reliance on human input,
resulting in improved scalability and efficiency.

Although the current generated dataset is very small, it
contains several demonstrations of the utility of this novel
generation process. The dataset includes several scenarios
with people of color, women, and rare diseases, all while
maintaining medical accuracy and building extensive patient
profiles.

In the following sections, we will detail the generation
process, describe the dataset structure, and explore potential
applications in medical training programs. This initiative



also aims to pave the way for more accessible and equitable
healthcare worldwide.

METHODOLOGY

The dataset generation incorporated a novel process for
generating medical diagnostics scenarios using small-scale
reinforcement learning with AI feedback (RLAIF) and
retrieval-augmented generation (RAG). The primary
objective of the dataset is to make accessible clinically
diverse, medically accurate, and detailed medical diagnostic
scenarios that can be used to support medical training and
machine learning applications. By integrating large language
models (LLMs) with iterative Al-based refinement and
contextual knowledge retrieval into the generation process,
we aim to enhance the factual accuracy, coherence, and
inclusivity of medical cases. We also aim to address
concerns regarding a lack of scenarios for people of color
and women by prompting models to generate data for these
demographics.

Our methodology for the generation of a single case in
this dataset follows a structured pipeline consisting of the
following steps:

O Vector embeddings generated from medical knowledge
sources to enable RAG functionality.

Initial scenario generation with a high-temperature
LLM.

small-scale reinforcement learning-based
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Structured outputting via function-calling formatting
into JSON for downstream usability.
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L. Vector Embedding and RAG

To enhance factual accuracy, we implemented RAG by
integrating real-world medical knowledge sources [9-10].
This functionality involves two major steps: embedding
generation and the retrieval process. During initialization,
real-world medical resources like the CURRENT Medical
Diagnosis and Treatment are split into chunks and converted
into numerical vector representations using OpenAl's Ada
002 pre-trained sentence embedding model [11]. These
sources were stored in a high-dimensional vector database

with Facebook AI Similarity Search (FAISS), a scalable
library for fast nearest-neighbor lookups [12]. The vector
database was then cached locally.

When generating, refining, or critiquing scenarios, the
prompt is converted into a dense vector representation using
the same embedding model as the initialization process, and
the query vector is compared against the indexed chunks’
vectors. Cosine similarity is used to rank the top-k most
relevant chunks [13]. Retrieved chunks are then prepended
to the generation context and prompt, ensuring models are
aware of relevant medical information when generating
scenarios.

During development and testing, we found that there
was little difference in performance in retrieving relevant
chunks when comparing the Ada model and various domain-
specific embeddings models such as the MedEmbed family
[14].

II. Initial Scenario Generation

The first step in generating a scenario involves the creation
of a baseline medical diagnostic scenario using a high-
temperature large language model. This phase establishes
the foundational structure of a case, and the high-
temperature value helps to generate more unique cases.
Initially, a topic, such as “influenza” or “skin rashes in
people of color” is chosen, and relevant context is retrieved.
In addition to this information, the model is prompted using
the chain of thought (CoT) technique to reduce
hallucinations [15]. The LLM’s output is formatted into a
coherent object with structured output via function calling.
This coherent object contains patient history, symptoms,
vital signs, diagnostic findings, diagnoses, and potential
treatments. A well-documented limitation of Al-generated
medical content is the underrepresentation of women and
people of color in clinical scenarios. To counteract this issue,
we explicitly instructed the LLM to generate cases featuring
diverse patient demographics, ensuring a balanced dataset.
By choosing a diverse set of topics and using a high-
temperature LL.M to generate initial scenarios, we curated
realistic and clinically valuable cases suitable for medical
education.

III. Iterative Refinement Using Al feedback

To enhance the quality, coherence, and clinical accuracy of
the initially generated scenarios, we implemented an
iterative refinement process with AI feedback. This
technique builds on top of the core principles of
reinforcement learning from human feedback (RLHF), but
differentiates itself by replacing human annotators with an
Al-based critic model that evaluates and refines scenarios
through multiple iterations. This approach ensures scalability
and detailed responses while maintaining validity.

Once an initial diagnostic scenario is generated, it
undergoes an automated quality assessment by a specialized
RAG LLM critic prompted to identify errors and
inconsistencies through CoT prompting. The critic is
instructed to assess the following metrics:



Medical Accuracy: Does the case align with known
medical knowledge?

Coherence: Is the case logically structured?

O O

Completeness: Does the scenario include all necessary

components, and is there any way to make it more
detailed?

QO Bias and Inclusivity: Does the scenario fairly represent

diverse patient demographics?

The Al critic identifies potential areas for improvement,
and the scenario, along with feedback, is sent back for
revision.

IV. Dataset Structuring and Storage

Once scenarios had gone through 5 epochs of refinement,
the structured output was converted to a JSON object and
stored in a .json file to maximize usability for downstream
applications.

V. Limitations and Implementation Notes

The existing dataset is only 100 scenarios large. Further
efforts will be focused on extending the size of the dataset
and increasing the number of refinement iterations to
improve the quality and detail of the generated examples.
The pipeline is currently built in Python and is accessible
through a command line interface. The model used to
generate the dataset was GPT-3.5-Turbo, and the system was
orchestrated with Langchain. External documents were split
into 1000-character chunks with 600-character overlap,
using the OpenAl Ada 002 embedding model.

RESULTS

In this section, we present preliminary results comparing
three approaches to generating diagnostic scenarios: the
“naive” method, a simplistic RAG with no refinement, and
our approach, which we refer to as RAG + Critic. Two
primary metrics were used for evaluation: medical accuracy
and detail. These metrics were calculated by manually
comparing a representative sample of the generated cases
and taking the average of the ratings for each metric for each
of the methods.

TABLE I
PRELIMINARY RESULTS
Method Medical Accuracy (0-10) Detail (0-10
Naive 9.59 5.59
RAG 10 5.56
RAG + Critic 10 5.78

While these initial results show promising
improvements in medical accuracy, and modest gains in
detail with the RAG + Critic method, future work will
incorporate more comprehensive evaluations, with planned
enhancements including expert evaluations to provide
further insights into system performance and to refine the

methodology specifically for medical education (i.e. through
additional metrics such as “educational value®).

DISCUSSION

The proposed dataset and generation methodology address
several key challenges in medical education, particularly
regarding diversity, accessibility, and accuracy in diagnostic
training materials. By leveraging retrieval-augmented
generation and reinforcement learning from Al feedback,,
we introduce a novel approach that enhances the factual
accuracy, coherence, and inclusivity of medical scenarios.
However, beyond its direction application in medical
education, this methodology presents opportunities for
broader implementations in other disciplines, pre-college
stem initiatives, and use in LMICs.

1. Comparison to Existing Methods

Traditionally, diagnostic scenarios in medical education are
crafted by domain experts with extensive clinical experience
and a deep understanding of patient care. However, expert-
generated content is limited in terms of scalability,
subjectivity, consistency, and resources. Creating a single
expert scenario is labor-intensive, making it challenging to
produce large, diverse datasets needed for comprehensive
training. In addition to this, while experts provide valuable
insights, hand-written cases risk containing human biases,
while variations in expertise may lead to inconsistencies
across cases. In contrast, our automated method aims to
bridge these gaps by delivering scalable, consistent, and
rapid generation of diagnostic scenarios. Although our
method might not yet capture all the subtle nuances of
expert-crafted cases, it offers a reproducible, efficient, and
scalable alternative. Moreover, model-specific fine-tuning
and the inclusion of direct expert feedback into the Al
refinement process in future iterations show promise in
further aligning outputs with expert insights.

Additionally, our approach distinguishes itself by
integrating domain-specific context enrichment with an
iterative Al feedback loop. Unlike the traditional “naive”
generation approach, which often lacks sufficient contextual
grounding, combining RAG with a critic enables an enriched
prompt with relevant medical context and effectively
contains an example of what a good scenario is to be
efficiently augmented, resulting in improved factual
accuracy and a stronger foundational structure for each
scenario. Most importantly, however, is the method’s
advantage over a simplistic RAG approach. One of basic
RAG’s pitfalls is its inability to retain information on
relationships. By integrating a RAG critic that evaluates
scenarios against diverse real-world medical snippets, our
approach effectively captures these critical relationships.

II. Applications in Other Disciplines

The combination of RAG and refinement techniques detailed
in this research offers a scalable and adaptable approach that
extends beyond medical education into other STEM fields.
The ability to iteratively refine Al-generated content using



domain-specific knowledge retrieval and small-scale
reinforcement learning presents opportunities for enhancing
content generation in disciplines requiring accurate, context-
aware problem-solving scenarios.

In engineering education, Al-driven case studies can be
generated and refined to produce realistic simulations of
structural failures, thermodynamic analyses, or circuit design
challenges. Contrary to traditional methods, simulation-
based methods could provide an opportunity for students to
engage with real-world conditions and reason about new
problem-solving approaches in controlled conditions [16].
By retrieving relevant engineering principles and reinforcing
the Al-generated content through iterative feedback loops,
students can engage with dynamically updated problem sets
that evolve based on expert-reviewed constraints and
industry standards. This ensures the learners are exposed to
increasingly complex scenarios tailored to real-world
engineering applications.

In computer science education, this system offers
benefits in generating and refining programming exercises,
cybersecurity attack-defense scenarios, and helping students
learn algorithmic principles dynamically. Al generation also
stands out in its ability to cater to students’ learning styles.
Human input specifying topics and difficulty in combination
with problem generation with this framework can help create
more optimal learning trajectories for students engaging with
advanced computing concepts. This technique can also be
used to prepare for standardized tests in general. By
grounding sample problems in existing exams, students can
more effectively adapt to the difficulty level of the test,
which is often not exact in third-party sample exams [17].

The adaptability of this methodology highlights its
potential as a transformative tool in interdisciplinary STEM
education. Using this framework, educators can enhance
engagement and improve learning outcomes, bridging the
gap between theoretical knowledge and real-world
application.

III. Pre-College Initiatives and Outreach Programs

Al-driven educational tools have the potential to enhance
pre-college initiatives and outreach programs by making
complex concepts more accessible and engaging. Less
complex versions of the generated scenarios can help
introduce high school students to problem-solving
techniques used in medicine, engineering, and data science.
Interactive learning experiences, such as wvirtual lab
simulations, can provide students with hands-on experience,
helping them refine technical skills in a meaningful manner.
Additionally, the integration of artificial intelligence-based
teaching techniques can help bridge educational gaps in
underserved communities, ensuring that students with
unique perspectives from diverse backgrounds have
exposure to advanced STEM topics before entering higher
education.

IV. Potential Impacts in LMICs

The implementation of Al-generated medical training
datasets has profound implications for LMICs, where access
to quality educational materials is often limited. By
leveraging Al to create a scalable and cost-efficient system
to generate diverse, medically accurate diagnostic cases, this
methodology can provide low-cost resources for healthcare
training programs in LMICs. Furthermore, Al-driven
medical education tools can supplement traditional learning
methods through simulation-based learning, which has been
shown to improve patient outcomes [18]. This becomes
extremely valuable in areas with a shortage of trained
instructors, ensuring that students receive high-quality
instruction regardless of geographical or financial
constraints. Future research could explore partnerships with
global health organizations to build a larger infrastructure to
support the distribution of Al-generated medical scenarios to
healthcare training institutions worldwide.

V. Synthetic Patient Data Generation for AI/ML
Applications

Ensuring patient confidentiality is a critical aspect of
medical data usage. By employing synthetic data generation
techniques, end users can circumvent risks associated with
using real data. By incorporating a more in-depth corpus of
medical knowledge, this methodology can create realistic
medical diagnostic scenarios without compromising patient
privacy, without compromising patient privacy. Synthetic
data generation can also make AI/ML models trained on
them more ethically viable through the controlled inclusion
of more diverse demographic characteristics, helping them
become more applicable across demographics. This
approach enhances the usability of synthetic data while
aligning with ethical standards and simplifying regulatory
requirements for medical data protection.

VI. Multimodal Data Generation & Physical Devices

An important extension of this methodology lies in the
potential for generating multimodal data, combining the
text-based diagnostic scenarios with other forms of data,
such as medical imaging or patient audio recordings. In
medical education, case studies are often enriched by visual
data, such as X-rays, MRIs, or ultrasound images, which
help future healthcare professionals develop reasoning skills
more comprehensively. Integrating these modalities can
extend the utility of the dataset and provide a more holistic
learning experience, where cases are paired with relevant
images, diagnostic graphs, or audio of patient symptoms
(e.g., breathing sounds for respiratory diseases or X-ray for a
broken wrist).

Multimodal data generation requires an advanced
pipeline that requires models to generate complex text
scenarios, determine potential visual or audio data sources,
and accurately generate plausible images or sounds. This
requires high-level relational reasoning and a higher-level
understanding than can be achieved through RAG. A
proposed framework to potentially do this would most likely
integrate a state-of-the-art reasoning model functioning as



the head of a multi-agent system, similar to that of the
virtual lab developed by Swanson et. al. [19].

Multimodal data can enhance the richness and depth of
training materials, ensuring that medical professionals are
exposed to diverse learning experiences through pure
software. However, another alternative approach to creating
a more holistic educational resource is the development of a
physical device to run and “display” the generated scenarios
from this methodology. Similar to Harvey, the framework in
this paper, combined with multimodal audio generation,
could enrich the quality of education by requiring students to
refine their data collection skills along with their diagnostic
skills [6].

CONCLUSION

The dataset and methodology in this research have broad
implications beyond medical education, offering
opportunities to both transform STEM learning and evolve
into a more holistic method of educating students to handle
real-world scenarios. By leveraging Al-driven content
generation, educational institutions can create more
inclusive, adaptive, and scalable learning resources that
address gaps in accessibility, diversity, and equity. Future
efforts should focus on expanding the dataset, refining Al-
generated educational tools, and assessing their impact on
student learning and professional outcomes. As Al continues
to revolutionize STEM education, ensuring the development
of high-quality, inclusive, and ethical training materials
remains a critical priority.

DATASET AVAILABILITY

The dataset generated in this research is available for
academic and educational use. Those interested in accessing
the dataset can reach out to me directly for inquiries.
Additionally, the dataset will be made available on GitHub
in the future, where updates, expanded case studies, and
refinements based on feedback from medical professionals
and educators will be provided.
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