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Abstract

This research introduces a comprehensive framework for Parkinson’s Disease (PD)
detection using voice recording data. We implemented and evaluated multiple deep
learning models, including a baseline Convolutional Neural Network (CNN), an
uncertainty-aware Monte Carlo-Dropout CNN (MCD-CNN), as well as a few-shot
learning approach to address dataset size limitations. Our models achieved an accuracy
over 90% in classifying PD patients using vocal biomarkers, with the ensemble model
demonstrating the highest performance. We employed data augmentation techniques to
address class imbalance and enhance generalization. Causal feature analysis revealed
that the Noise-to-Harmonics Ratio (NHR), Recurrence Period Density Entropy (RPDE),
and MDVP jitter parameters were among the most significant vocal biomarkers for PD
detection, in order of estimated effect magnitude. Across deep learning models, features
exhibiting the strongest absolute correlation with outputs consistently showed the
largest estimated effect magnitudes. The few-shot learning approach showed promising
results as well, even with limited training examples. This work demonstrates the use of
causal feature analysis to validate the analysis of deep learning models, potentially
enabling accessible and interpretable non-invasive screening tools.

Introduction

Parkinson’s disease (PD) is a progressive neurodegenerative disorder that affects more
than 10 million people worldwide and can impose significant clinical and economic
burdens [1},/2]. Clinical diagnosis typically relies on motor symptoms such as tremor,
bradykinesia, rigidity, and postural instability that emerge only after substantial
dopaminergic neuron loss [3,4]. Although modalities such as DaT-SPECT imaging,
wearable movement sensors, smartphone-based digital biomarkers, EEG screening, and
blood-based molecular assays offer noninvasive or minimally invasive early detection
options, they depend on handcrafted features, lack uncertainty quantification, and do
not establish causal links between biomarkers and predictions [5H9]. However,
hypokinetic dysarthria often manifests up to five years before motor signs, positioning
voice recordings as a low-cost and widely accessible screening avenue [4].

This research introduces a comprehensive framework for PD detection from
sustained vowel recordings by implementing and evaluating three deep learning models:
a baseline Convolutional Neural Network (CNN), an uncertainty-aware Monte
Carlo-Dropout CNN (MCD-CNN), and a few-shot learning variant to mitigate the
limited amount of data [LOL[L1]. Our ensemble surpasses 90% accuracy in distinguishing
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Figure Visualization of
class imbalance in UCI ML
Repository Parkinson’s Tele-
monitoring dataset. We per-
formed data augmentation to ad-
dress class imbalance and limited
dataset size. However, we did not
even out the classes completely
as it would have limited the maxi-
mum dataset size without diluting
the density of the unaugmented
samples. Our initial class ratio
was 24:76, and after augmenta-
tion, it improved to 46:54.

PD from healthy voices, leveraging data augmentation to correct class imbalance and
improve generalization. Critically, we apply causal feature analysis to quantify the effect
sizes of vocal biomarkers, identifying Noise-to-Harmonics Ratio (NHR), Recurrence
Period Density Entropy (RPDE), and MDVP jitter as the most influential

predictors . Features exhibiting the highest absolute correlations also demonstrate
the largest estimated causal effects across models, confirming their mechanistic
relevance.

Shallow classifiers using handcrafted acoustic features (jitter, shimmer, MFCCs)
have achieved up to 95% accuracy in voice-based PD detection but remain correlational
and opaque . Wearable inertial sensors and gait-analysis platforms reliably quantify
gait abnormalities for prodromal motor anomalies @, while smartphone and
smartwatch digital biomarker systems facilitate continuous remote monitoring of both
motor and non-motor symptoms . EEG-based screening demonstrates high specificity
in early PD neural signatures [8], and blood-based tRNA fragment assays yield AUCs
(area under the receiver operating characteristic curve, a measure of classification
performance where 1.0 indicates perfect accuracy) around 0.86 for molecular
detection ﬂgﬂ None of these approaches, however, couple deep learning performance
with rigorous uncertainty quantification and causal validation of feature importance,
which are gaps the new framework addresses.

Materials and Methods

Dataset.

This study utilizes the Parkinson’s Telemonitoring dataset from the UCI Machine
Learning Repository . The dataset contains voice measurements from 42
individuals, 5 of whom are healthy and 37 diagnosed with Parkinson’s disease. These
voice recordings are characterized by a range of vocal features such as fundamental
frequency (jitter), amplitude variation (shimmer), noise-to-harmonics ratio (NHR), and
other signal processing metrics
commonly known to be indicative
of Parkinsonian speech impairments.
Each set of signal processing metrics
for each voice sample is associated
with a label that indicates the
individual’s Parkinson’s diagnosis,
where 0 represents healthy and

1 represents a patient diagnosed
with Parkinson’s. To enhance the
quality and diversity of the training
data, a range of data augmentation
techniques was applied with the
goal of balancing class distributions
and expanding the dataset. These techniques included adding Gaussian noise to
simulate measurement variability, perturbing a subset of features to mimic natural
fluctuations, interpolating between samples of the same class to generate intermediate
examples, applying global scaling and shifting to introduce broader variability, and
randomly masking features to simulate missing or occluded data. Together, these
strategies produced a more balanced and representative dataset that can help improve
model generalization and reduce bias toward overrepresented classes.
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Model Architectures.

We designed three primary deep-learning architectures for voice-based PD classification:

1. Vanilla CNN. A one-dimensional convolutional neural network that treats each
feature as a signal. The input (D = 22 features) is reshaped to (1 x D) and passed
through two convolutional layers (4 and 8 filters respectively, kernel size = 3,
padding = 1), each followed by ReLU and 20% dropout layer. The flattened
representation then feeds a fully connected layer (16 units + ReLU + 20%
dropout) and a sigmoid output neuron for binary classification.

2. MC-Dropout CNN. Identical to the Vanilla CNN, but retains dropout at
inference ("Monte Carlo Dropout”) to capture model uncertainty. At test time,
we perform 50 stochastic forward passes and utilize the set of predicted
classifications to yield a mean prediction and an estimate of epistemic uncertainty
derived from variance.

3. Few-Shot Learner. Builds on the base CNN by adding a prototype embedding
layer (8-dim) after the convolutional blocks. For a small "support set” of k
examples per class, we extract embeddings and store their labels. At query time,
we compute Euclidean distances between query embeddings and support
embeddings and produce a weighted average prediction. This prototypical
nearest-neighbor approach mitigates data scarcity.

4. Ensemble Model. Averages the Vanilla CNN and MC-Dropout CNN
predictions to further stabilize performance, taking ”the best of both worlds.”

Training.

All models were trained using the same optimization settings: binary cross-entropy loss,
the Adam optimizer with an initial learning rate of le-3, and a ReduceLROnPlateau
scheduler (factor 0.5, patience of 5). Early stopping was applied with a patience of 10
epochs based on validation loss, restoring the best weights. Training was conducted
with a batch size of 32 for up to 50 epochs. Throughout training, we monitored training
and validation loss, validation accuracy, and AUC-ROC at each epoch, with learning
rate adjustments and early stopping helping to prevent overfitting and ensure consistent
convergence across models. We split the dataset into 80% training and 20% testing.
Within the training set, we reserved 10% for validation. Thus, the final data split was
72% training, 8% validation, and 20% testing. All models were trained on the training
set, tuned using the validation set (e.g., for early stopping and learning rate scheduling),
and evaluated only on the held-out test set.

Causal Analysis.

In order to validate that our models were learning beyond correlational
feature-importance, we employed Double Machine learning via the CausalForest DML
estimator from the EconML library [17]. Each vocal feature X; was treated as a
"treatment”, while all other features were controls. We fit two random forest regressor
learners, one of the outcome model and one of the treatment model, and then estimate
the conditional average treatment effect (CATE) of pertrubing X; on the PD
probability, which was then averaged to get an estimated effect size per feature. After
quantifying the causal impact for each biomarker, we also took the average of biomarker
groups like MDVP to get a mean estimated effect for each group. This approach
quantified the causal impact of each marker, accounting for confounding among features.
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Results

The Vanilla CNN achieved the highest raw accuracy (97.4%) and AUC-ROC (0.9897),
while the MC-Dropout CNN provided uncertainty-aware predictions with slightly lower
accuracy (89.7%, AUC-ROC = 0.9655). The ensemble balanced these, yielding 92.3%

accuracy and AUC-ROC = 0.9862.

Table 1. Model comparison. Performance comparison of Vanilla CNN, MC-Dropout
CNN, and Ensemble Model on training dataset.

Model Accuracy | Precision | Recall | F1 Score | AUC-ROC
Vanilla CNN 0.9744 1.0000 0.9655 0.9825 0.9897
MC-Dropout CNN 0.8974 0.9630 0.8966 0.9286 0.9655
Ensemble Model 0.9231 0.9643 0.9310 0.9474 0.9862

Causal feature ranking identified Noise-to-Harmonics Ratio (NHR), Recurrence
Period Density Entropy (RPDE), and MDVP jitter as the top three drivers of model
predictions, consistent with their high correlation and large estimated causal effects.

Feature Correlation with Target
Average Causal Effect of PD Status on Each Voice Feature
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The few-shot learner, even with as few as three examples per class (which sums up
to a total of six labeled examples), attained mean accuracy ~~ 66% and F1 > 0.7 on
1,000 runs, outperforming a random forest baseline demonstrating robustness under
extreme data scarcity.

Figure Few-shot learn-

Few-Shot Learning Performance Full Training vs Few-Shot Learning

ing performance and compar- =5 E e
ison to full-data training. Left: 0s-

Mean accuracy (red) and F1 score

(blue) £ 1 SD of the prototypical -

few-shot learner as a function of i a

the number of support examples

per class. Right: Bar chart con- oz-
trasting the full-data CNN against

the 10-shot few-shot model on test :
accuracy and F1 score.

F1 Score

Accuracy

4 6 s )
Number of Shots (Samples per Class) Metric

110

111

112

113

114

115

116

117

118

119

120

121


https://doi.org/10.1101/2025.04.25.25326311
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2025.04.25.25326311; this version posted April 26, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license .

Discussion

The comprehensive benchmarking of three deep learning architectures for Parkinson’s
disease diagnosis based on voice analysis is shown to achieve both high predictability
and high interpretability. Vanilla CNN exhibited accuracy of 97.4% (AUC-ROC =
0.9897), beating conventional shallow classifiers based on hand-engineered acoustic
features |13]. Although MC-Dropout CNN showed somewhat reduced raw accuracy
(89.7%, AUC-ROC = 0.9655), it gave well-calibrated estimates of uncertainty, thereby
resolving a key essential for clinical decision support [10].

CausalForest DML-based analysis confirmed that Noise-to-Harmonics Ratio,
Recurrence Period Density Entropy, and MDVP jitter exert the largest estimated causal
effects on PD probability, in line with their strong correlation with model outputs.
MDVP jitter, NHR, and RPDE aren’t just correlated—they likely reflect actual disease
mechanisms: jitter shows unstable vocal fold movement, NHR indicates glottal closure
issues, and RPDE captures irregular voice patterns [18,/19]. All three align with known
pathophysiology in PD, like bradykinesia and dysphonia [2022]. This
intervention-aware approach goes beyond associational attributions, ascertaining that
these vocal biomarkers do reflect underlying pathophysiology and not dataset artifacts.
Agreement between correlation strength and causal effect magnitude across models can
also enhance belief in mechanistic interpretations.

The few-shot learner performed about 66% accuracy and an F1 value of over 0.7
with just three examples per class, far surpassing random baseline results and
highlighting its promise in scenarios with limited labeled data. Such data-efficient
models could be vital if developing large-scale labeled voice corpora proves difficult.

Nevertheless, our study is limited by reliance on the UCI Telemonitoring dataset’s
42 subjects [15}/16]. Although extensive data augmentation was applied, synthetic
variability cannot fully substitute for diverse, real-world recordings. Future work should
extend this framework to larger, multi-center cohorts and utilize longitudinal voice
samples to ascertain robustness over time. Additionally, causal effect estimation
assumes no unobserved confounders; the addition of demographic and recording-device
covariates may provide still stronger causal inferences [17].

Looking ahead, incorporation into mobile or telehealth platforms would enable the
deployment of scalable, non-invasive PD screening at large scale, with uncertainty
values guiding appropriate clinical referral. Extending causal interpretability to
multimodal inputs such as inertial gait sensors [6[14], smartphone digital biomarkers [7],
EEG signatures [8], or molecular assays [9] provides a more detailed diagnostic
landscape and more robust early-detection hardware. Additionally, doctors mainly use
motor symptoms like tremor and rigidity for diagnosis. They don’t typically rely on
voice features, though dysphonia is recognized. This model shows voice-based markers
can detect PD even earlier and more precisely. If clinicians adopt these data-driven
features, they could catch cases earlier, especially in remote settings, and improve
understanding of how PD affects speech.

Data Availability

The UCI Machine Learning Repository Oxford Parkinson’s Disease Detection Dataset is
accessible at https://archive.ics.uci.edu/dataset/174/parkinsons| [15}16].
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