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Abstract

This research introduces a comprehensive framework for Parkinson’s Disease (PD)
detection using voice recording data. We implemented and evaluated multiple deep
learning models, including a baseline Convolutional Neural Network (CNN), an
uncertainty-aware Monte Carlo-Dropout CNN (MCD-CNN), as well as a few-shot
learning approach to address dataset size limitations. Our models achieved an accuracy
over 90% in classifying PD patients using vocal biomarkers, with the ensemble model
demonstrating the highest performance. We employed data augmentation techniques to
address class imbalance and enhance generalization. Causal feature analysis revealed
that the Noise-to-Harmonics Ratio (NHR), Recurrence Period Density Entropy (RPDE),
and MDVP jitter parameters were among the most significant vocal biomarkers for PD
detection, in order of estimated effect magnitude. Across deep learning models, features
exhibiting the strongest absolute correlation with outputs consistently showed the
largest estimated effect magnitudes. The few-shot learning approach showed promising
results as well, even with limited training examples. This work demonstrates the use of
causal feature analysis to validate the analysis of deep learning models, potentially
enabling accessible and interpretable non-invasive screening tools.

Introduction 1

Parkinson’s disease (PD) is a progressive neurodegenerative disorder that affects more 2

than 10 million people worldwide and can impose significant clinical and economic 3

burdens [1, 2]. Clinical diagnosis typically relies on motor symptoms such as tremor, 4

bradykinesia, rigidity, and postural instability that emerge only after substantial 5

dopaminergic neuron loss [3, 4]. Although modalities such as DaT-SPECT imaging, 6

wearable movement sensors, smartphone-based digital biomarkers, EEG screening, and 7

blood-based molecular assays offer noninvasive or minimally invasive early detection 8

options, they depend on handcrafted features, lack uncertainty quantification, and do 9

not establish causal links between biomarkers and predictions [5–9]. However, 10

hypokinetic dysarthria often manifests up to five years before motor signs, positioning 11

voice recordings as a low-cost and widely accessible screening avenue [4]. 12

This research introduces a comprehensive framework for PD detection from 13

sustained vowel recordings by implementing and evaluating three deep learning models: 14

a baseline Convolutional Neural Network (CNN), an uncertainty-aware Monte 15

Carlo-Dropout CNN (MCD-CNN), and a few-shot learning variant to mitigate the 16

limited amount of data [10, 11]. Our ensemble surpasses 90% accuracy in distinguishing 17
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PD from healthy voices, leveraging data augmentation to correct class imbalance and 18

improve generalization. Critically, we apply causal feature analysis to quantify the effect 19

sizes of vocal biomarkers, identifying Noise-to-Harmonics Ratio (NHR), Recurrence 20

Period Density Entropy (RPDE), and MDVP jitter as the most influential 21

predictors [12]. Features exhibiting the highest absolute correlations also demonstrate 22

the largest estimated causal effects across models, confirming their mechanistic 23

relevance. 24

Shallow classifiers using handcrafted acoustic features (jitter, shimmer, MFCCs) 25

have achieved up to 95% accuracy in voice-based PD detection but remain correlational 26

and opaque [13]. Wearable inertial sensors and gait-analysis platforms reliably quantify 27

gait abnormalities for prodromal motor anomalies [6, 14], while smartphone and 28

smartwatch digital biomarker systems facilitate continuous remote monitoring of both 29

motor and non-motor symptoms [7]. EEG-based screening demonstrates high specificity 30

in early PD neural signatures [8], and blood-based tRNA fragment assays yield AUCs 31

(area under the receiver operating characteristic curve, a measure of classification 32

performance where 1.0 indicates perfect accuracy) around 0.86 for molecular 33

detection [9]. None of these approaches, however, couple deep learning performance 34

with rigorous uncertainty quantification and causal validation of feature importance, 35

which are gaps the new framework addresses. 36

Materials and Methods 37

Dataset. 38

This study utilizes the Parkinson’s Telemonitoring dataset from the UCI Machine 39

Learning Repository [15,16]. The dataset contains voice measurements from 42 40

individuals, 5 of whom are healthy and 37 diagnosed with Parkinson’s disease. These 41

voice recordings are characterized by a range of vocal features such as fundamental 42

frequency (jitter), amplitude variation (shimmer), noise-to-harmonics ratio (NHR), and

Figure 1. Visualization of
class imbalance in UCI ML
Repository Parkinson’s Tele-
monitoring dataset. We per-
formed data augmentation to ad-
dress class imbalance and limited
dataset size. However, we did not
even out the classes completely
as it would have limited the maxi-
mum dataset size without diluting
the density of the unaugmented
samples. Our initial class ratio
was 24:76, and after augmenta-
tion, it improved to 46:54.

43

other signal processing metrics 44

commonly known to be indicative 45

of Parkinsonian speech impairments. 46

Each set of signal processing metrics 47

for each voice sample is associated 48

with a label that indicates the 49

individual’s Parkinson’s diagnosis, 50

where 0 represents healthy and 51

1 represents a patient diagnosed 52

with Parkinson’s. To enhance the 53

quality and diversity of the training 54

data, a range of data augmentation 55

techniques was applied with the 56

goal of balancing class distributions 57

and expanding the dataset. These techniques included adding Gaussian noise to 58

simulate measurement variability, perturbing a subset of features to mimic natural 59

fluctuations, interpolating between samples of the same class to generate intermediate 60

examples, applying global scaling and shifting to introduce broader variability, and 61

randomly masking features to simulate missing or occluded data. Together, these 62

strategies produced a more balanced and representative dataset that can help improve 63

model generalization and reduce bias toward overrepresented classes. 64
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Model Architectures. 65

We designed three primary deep-learning architectures for voice-based PD classification: 66

1. Vanilla CNN. A one-dimensional convolutional neural network that treats each 67

feature as a signal. The input (D = 22 features) is reshaped to (1 x D) and passed 68

through two convolutional layers (4 and 8 filters respectively, kernel size = 3, 69

padding = 1), each followed by ReLU and 20% dropout layer. The flattened 70

representation then feeds a fully connected layer (16 units + ReLU + 20% 71

dropout) and a sigmoid output neuron for binary classification. 72

2. MC-Dropout CNN. Identical to the Vanilla CNN, but retains dropout at 73

inference (”Monte Carlo Dropout”) to capture model uncertainty. At test time, 74

we perform 50 stochastic forward passes and utilize the set of predicted 75

classifications to yield a mean prediction and an estimate of epistemic uncertainty 76

derived from variance. 77

3. Few-Shot Learner. Builds on the base CNN by adding a prototype embedding 78

layer (8-dim) after the convolutional blocks. For a small ”support set” of k 79

examples per class, we extract embeddings and store their labels. At query time, 80

we compute Euclidean distances between query embeddings and support 81

embeddings and produce a weighted average prediction. This prototypical 82

nearest-neighbor approach mitigates data scarcity. 83

4. Ensemble Model. Averages the Vanilla CNN and MC-Dropout CNN 84

predictions to further stabilize performance, taking ”the best of both worlds.” 85

Training. 86

All models were trained using the same optimization settings: binary cross-entropy loss, 87

the Adam optimizer with an initial learning rate of 1e-3, and a ReduceLROnPlateau 88

scheduler (factor 0.5, patience of 5). Early stopping was applied with a patience of 10 89

epochs based on validation loss, restoring the best weights. Training was conducted 90

with a batch size of 32 for up to 50 epochs. Throughout training, we monitored training 91

and validation loss, validation accuracy, and AUC-ROC at each epoch, with learning 92

rate adjustments and early stopping helping to prevent overfitting and ensure consistent 93

convergence across models. We split the dataset into 80% training and 20% testing. 94

Within the training set, we reserved 10% for validation. Thus, the final data split was 95

72% training, 8% validation, and 20% testing. All models were trained on the training 96

set, tuned using the validation set (e.g., for early stopping and learning rate scheduling), 97

and evaluated only on the held-out test set. 98

Causal Analysis. 99

In order to validate that our models were learning beyond correlational 100

feature-importance, we employed Double Machine learning via the CausalForestDML 101

estimator from the EconML library [17]. Each vocal feature Xj was treated as a 102

”treatment”, while all other features were controls. We fit two random forest regressor 103

learners, one of the outcome model and one of the treatment model, and then estimate 104

the conditional average treatment effect (CATE) of pertrubing Xj on the PD 105

probability, which was then averaged to get an estimated effect size per feature. After 106

quantifying the causal impact for each biomarker, we also took the average of biomarker 107

groups like MDVP to get a mean estimated effect for each group. This approach 108

quantified the causal impact of each marker, accounting for confounding among features. 109
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Results 110

The Vanilla CNN achieved the highest raw accuracy (97.4%) and AUC-ROC (0.9897), 111

while the MC-Dropout CNN provided uncertainty-aware predictions with slightly lower 112

accuracy (89.7%, AUC-ROC = 0.9655). The ensemble balanced these, yielding 92.3% 113

accuracy and AUC-ROC = 0.9862. 114

Table 1. Model comparison. Performance comparison of Vanilla CNN, MC-Dropout
CNN, and Ensemble Model on training dataset.

Model Accuracy Precision Recall F1 Score AUC-ROC
Vanilla CNN 0.9744 1.0000 0.9655 0.9825 0.9897
MC-Dropout CNN 0.8974 0.9630 0.8966 0.9286 0.9655
Ensemble Model 0.9231 0.9643 0.9310 0.9474 0.9862

Causal feature ranking identified Noise-to-Harmonics Ratio (NHR), Recurrence 115

Period Density Entropy (RPDE), and MDVP jitter as the top three drivers of model 116

predictions, consistent with their high correlation and large estimated causal effects. 117

Figure 2. Causation and
Correlation. Left: Visualiza-
tion of estimated effect of various
biomarkers and biomarker groups
quantified through the Causal-
ForestDML approach. Right: Fea-
ture correlation values for Vanilla
CNN.

The few-shot learner, even with as few as three examples per class (which sums up 118

to a total of six labeled examples), attained mean accuracy ≈ 66% and F1 > 0.7 on 119

1,000 runs, outperforming a random forest baseline demonstrating robustness under 120

extreme data scarcity. 121

Figure 3. Few-shot learn-
ing performance and compar-
ison to full-data training. Left:
Mean accuracy (red) and F1 score
(blue) ± 1 SD of the prototypical
few-shot learner as a function of
the number of support examples
per class. Right: Bar chart con-
trasting the full-data CNN against
the 10-shot few-shot model on test
accuracy and F1 score.
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Discussion 122

The comprehensive benchmarking of three deep learning architectures for Parkinson’s 123

disease diagnosis based on voice analysis is shown to achieve both high predictability 124

and high interpretability. Vanilla CNN exhibited accuracy of 97.4% (AUC-ROC = 125

0.9897), beating conventional shallow classifiers based on hand-engineered acoustic 126

features [13]. Although MC-Dropout CNN showed somewhat reduced raw accuracy 127

(89.7%, AUC-ROC = 0.9655), it gave well-calibrated estimates of uncertainty, thereby 128

resolving a key essential for clinical decision support [10]. 129

CausalForestDML-based analysis confirmed that Noise-to-Harmonics Ratio, 130

Recurrence Period Density Entropy, and MDVP jitter exert the largest estimated causal 131

effects on PD probability, in line with their strong correlation with model outputs. 132

MDVP jitter, NHR, and RPDE aren’t just correlated—they likely reflect actual disease 133

mechanisms: jitter shows unstable vocal fold movement, NHR indicates glottal closure 134

issues, and RPDE captures irregular voice patterns [18, 19]. All three align with known 135

pathophysiology in PD, like bradykinesia and dysphonia [20–22]. This 136

intervention-aware approach goes beyond associational attributions, ascertaining that 137

these vocal biomarkers do reflect underlying pathophysiology and not dataset artifacts. 138

Agreement between correlation strength and causal effect magnitude across models can 139

also enhance belief in mechanistic interpretations. 140

The few-shot learner performed about 66% accuracy and an F1 value of over 0.7 141

with just three examples per class, far surpassing random baseline results and 142

highlighting its promise in scenarios with limited labeled data. Such data-efficient 143

models could be vital if developing large-scale labeled voice corpora proves difficult. 144

Nevertheless, our study is limited by reliance on the UCI Telemonitoring dataset’s 145

42 subjects [15,16]. Although extensive data augmentation was applied, synthetic 146

variability cannot fully substitute for diverse, real-world recordings. Future work should 147

extend this framework to larger, multi-center cohorts and utilize longitudinal voice 148

samples to ascertain robustness over time. Additionally, causal effect estimation 149

assumes no unobserved confounders; the addition of demographic and recording-device 150

covariates may provide still stronger causal inferences [17]. 151

Looking ahead, incorporation into mobile or telehealth platforms would enable the 152

deployment of scalable, non-invasive PD screening at large scale, with uncertainty 153

values guiding appropriate clinical referral. Extending causal interpretability to 154

multimodal inputs such as inertial gait sensors [6, 14], smartphone digital biomarkers [7], 155

EEG signatures [8], or molecular assays [9] provides a more detailed diagnostic 156

landscape and more robust early-detection hardware. Additionally, doctors mainly use 157

motor symptoms like tremor and rigidity for diagnosis. They don’t typically rely on 158

voice features, though dysphonia is recognized. This model shows voice-based markers 159

can detect PD even earlier and more precisely. If clinicians adopt these data-driven 160

features, they could catch cases earlier, especially in remote settings, and improve 161

understanding of how PD affects speech. 162

Data Availability 163

The UCI Machine Learning Repository Oxford Parkinson’s Disease Detection Dataset is 164

accessible at https://archive.ics.uci.edu/dataset/174/parkinsons [15,16]. 165
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